—

-

ERICSSON

PARALLELISM IN eRLANG

HOW IT'S DONe AND HOW TO USe IT

PATRIK NYBLOM, eRICSSON AB

vanderlang.orqg

mailto:pan@erlang.org
mailto:pan@erlang.org

cRLANG/OTP AND ME...

»Erlang/OTP - department at Ericsson AB in Stockholm

» Developed the language and support libraries since 1996
» Open source since 1998, but still maintained at Ericsson
» SMP support since 2006

»| started 1998, and has since worked with...

VxWorks and Windows ports

ETS

SMP support

Distribution and network communication

Virtual machine core

Garbage collector

Tracing

Unicode, Regular expressions, Dtrace support, ...
—Team leader of VM team for several years
—Lecturing at Stockholm University in parallel programming

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 2

onsdag den 2 maj 2012

PARALLELISM IN ERLANG

»Erlang is an actor language with a functional sequential part

»Actors (processes) execute independently
—Concurrency built in

» Implicit parallelism
-With the SMP support concurrency became parallelism

The more concurrency, the more implicit parallelism
Requires suitable design choices

» Explicit parallelism

—The implicit parallelism can be utilized to create truly parallel programs
In a more classical way

—Dividing algorithms into autonomous parts that can run in parallel
—Create at least an actor (Erlang process) for each core in the system
The VM will spread working processes over the cores

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 3

onsdag den 2 maj 2012

IMPLICIT PARALLELISM IN ERLANG

»*Normal” concurrent Erlang processes (actors) are
automatically spread over the available CPU cores so that
they can execute in parallel

» The programmer basically writes the programs according to
the paradigm, without ever thinking about threads, cores
shared resources etc

—Still requires that the program really has potential for parallelism

—If nothing executed concurrently (all synchronous behavior), nothing
will happen in parallel

—Most communication programs will gain automatically

—Programs that use purely synchronous interfaces between actors will
gain next to nothing at all

Will need rethinking

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 4

onsdag den 2 maj 2012

IMPLICIT PARALLELISM
IMPLEMENTATION

» The VM schedules the execution of actors with one scheduler per
core in the system.

> As many actors as there are cores will execute in parallel at any time

» Elaborate (and unique) algorithms for distributing actors over the
scheduling queues
—Put the job in the “shortest™ queue
—Rebalance periodically
—Migrate and steal jobs when necessary (but only then)
—Try to keep processes running in the same core

» Communication (message passing) between the actors (and possibly
between cores) are handled by the VM
—The programmer does not need to know anything about the message queue
Implementation
» The VM takes responsibility for all communication between
schedulers
—New code
—Shared resources like ETS tables

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 5

onsdag den 2 maj 2012

IMPLICIT PARALLELISM, BAD EXAMPLE

start (PortNumber) ->
{ok, ListenSocket} =
gen tcp:listen (PortNumber, [{active, false}, {backlog,100}]),
server loop (ListenSocket).
server loop(ListenSocket) ->
case gen tcp:accept (ListenSocket) of
{ok, Sock} ->
handle connection (Sock),
gen tcp:close(Sock),
server loop (ListenSocket);
Other ->
handle error (Other)
end.
handle connection (Sock) ->

o O

$% gen tcp:recv -> gen tcp:send until done

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 6

onsdag den 2 maj 2012

IMPLICIT PARALLELISM, BETTE
cXAMPLE

server loop(ListenSocket) ->
case gen tcp:accept (ListenSocket) of
{ok, Sock} ->
Ref = make ref (),
Pid = spawn (?MODULE, handle connection, [Sock,Ref]),

gen tcp:controlling process (Sock, Pid),

Pid ! Ref,
server loop (ListenSocket);
Other ->
handle error (Other)
end.
handle connection (Sock, Ref) ->

recelive Ref -> conn loop(Sock) end.

conn loop (Sock) —->

$% gen tcp:recv -> gen tcp:send until done, then close.

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 7

onsdag den 2 maj 2012

OR WITH A NUMBER OF PRe-SPAWNE
WORKERS

start (PortNumber) ->
{ok, ListenSocket} =
gen tcp:listen (PortNumber, [{active, false}, {backlog,100}]),
Plist =
[spawn (?MODULE, server loop, [ListenSocket]) ||
<- lists:seqg(l,erlang:system info(schedulers online)?*
?SOME_ FACTOR)],

walt for processes (Plist).

server loop (ListenSocket) ->
case gen tcp:accept(ListenSocket) of
{ok, Sock} ->
handle connection (Sock),
gen tcp:close(Sock),
server loop (ListenSocket);
Other ->
handle error (Other)
end.
handle connection (Sock) ->

$% gen tcp:recv —-> gen tcp:send until done

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 8

onsdag den 2 maj 2012

cXPLICIT PARALLELIZATION

» If one single actor has to much work to do compared to other
actors in the system, the work will not be equally distributed
among cores

—Usually not a big problem in large communication systems (telecom,
web servers etc)

—A really big problem in e.g. Al algorithms, compilers etc where the
program is sequential
» The algorithm needs to be divided into tasks that can be
performed in parallel
—Sometimes it's easy - the algorithm is embarrassingly parallel
Typically some matrix operations, GPU’s has many cores
Usually data parallel
Still requires care! Is it really embarrassingly parallel to the computer?
—Usually it's harder
Task dependencies
Shared resources...

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 9

onsdag den 2 maj 2012

SIMPLE eXAMPL TASK

— —
c OF
— — — N\ =
DEPENDENCIES
* Areally simple database table
RegNo [Brand |[Model |Year |Colour [Type
LKM678 |Saab 9-5 2006 Blue Car
GHT667 |Triumph |Thruxton [2008 Yellow MC
LET137 |Piaggio |Vespa 1999 Green MC
PAR131 |Piaggio |Vespa 1967 Yellow MC
OOPO0O0O1 |Piaggio |Vespa 1969 Red Moped
ERL666 |Piaggio |Vespa 1968 Red Moped
POP999 |Lambretta |LI150 1960 Blue MC

» Let's say we want the reg. numbers of all the Piaggio MC's
that are either Yellow or Green:

SELECT RegNo FROM Vehicles WHERE
Brand="Piaggio” AND Type="MC” AND

(Colour="Yellow” OR Colour="Green”);

onsdag den 2 maj 2012

Li

=TS DIVID

- THE

QU

ERY INTO TASKS

LET137 |Piaggio GHT667 |MC
PAR131 |Piaggio LET137 [MC
OOPO001 |Piaggio PAR131 [MC
ERL666 |Piaggio POP999 |MC

LET137

Piaggio

MC

PAR131

Piaggio

MC

LET137

Piaggio

Green

PAR131

Piaggio

Yellow

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 11

GHT667

Yellow

PAR131

Yellow

LET137

QGreen

GHT667

Yellow

PAR131

Yellow

LET137

Green

onsdag den 2 maj 2012

YOU COULD TH

OVER UP TO |

=N SPRI

—AD THE

TA

-OUR CORES...

S

K

S

DECOMPOSING OTHER PROBLEMS
THAN THe SIMPLEST..

» Tasks may be unbalanced, size of tasks may be different
» Average sizes of tasks may vary depending on the problem

» Dependencies may come in different forms

—Unbalanced as an ad hoc query to a database
—Balanced like a merge-sort

Divide and conquer

Recursive decomposition

» Some tasks may even be wasted

—Exploratory decomposition
—Typically in search algorithms

» The number and sizes of tasks may be known from the beginning
—Static vs dynamic task creation

» Communication between tasks means synchronization points and
possible congestion - should be kept at a minimum

» The memory consumption and placement are very important
characteristics that are often not fully understood

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 13

onsdag den 2 maj 2012

MAPPING THE TASKS TO PROCESSORS

»In a static decomposition, one might create one actor per
core in the system and spread the tasks equally

»As soon as tasks are of indeterminable sizes or dynamically
created, it get's trickier

—In Erlang, a shortcut is to create more actors than cores (schedulers),
The scheduling algorithm will dynamically spread the work over the
cores

Sometimes you can simply create one process per task

For smaller tasks, you can create actors up to a defined limit and let
them work on the tasks available

—In other languages (non-actor), a worker pool is the way to achieve the
effect of actors

—A lot of tricks for worker pools can be found in communicating
applications, where resources are dynamically allocated to handle
certain types of load

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 14

onsdag den 2 maj 2012

HOW IS THIS DONE INSIDE THi
MACHINE?

» The job an actor does during one scheduling equals the tasks

> The schedulers are the worker pool
—Avoid communication between the workers (i.e. the schedulers). They...
Have their own queues
Have their own memory allocators
Tend to schedule jobs for batch processing at given intervals
—Lock-free queues are used for much of the communication
Lock free algorithms are seldom wait-free
Hard to invent, hard to prove
Understanding the processor architectures in detail is necessary
- Use of memory barriers is essential...and hard...

- Forget the concept of “now”, what you have is more of if - then relationships
(implications)
—Atomic operations is a special kind of small lock-free algorithms
Built into modern architectures

May be more costly than you think (e.g. atomic exchange may requires a lot of
communication)

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 15

onsdag den 2 maj 2012

HARDWARI

- DeV

VW DeVI

cLOPM
=LOPM

cNT DRIV

=NT

»Multicore to many-core

—Global locks get more or less impossible to use: congestion eats up
the gain of additional cores

Use lock free algorithms

Add management tasks with multiple message queues collecting
information from the workers to handle global data

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 16

onsdag den 2 maj 2012

HARDWARE DeVELOPMENT DRIVES
\//\/\ DE\/E LO P/\/\EI\\IT (CONTINUED)

»Modern architectures share resources between cores that
you might not expect
—Example: AMD magny-cours - one of the two NUMA nodes in a

processor
ﬂ “Magny-Cours” Die (Node) | |
_________________ o o . .-
; Core I l Core l l Cor P Co I | Core | | Core |
g o BB 1 B 2 |, i 3 |, 4 [) 5 |
i 512kB ' I 51'2kB " l 51"2kB ' l 51I2kB ' I 51|2kB I ' 51|2kB '
Y2 e Y e [T) e | !’ 2 Shared (and small)

-TFTT—' ..Tﬁ.—‘_' _—t-].l._ _.t..T._' _.t..T._' _.t..T._'
System Request Interface (SRI/
— ey
__| L3 data array
| L3 tag (6MB)

XBAR

1 A A Ar

Memory <«—— Probe
Controller * Filter

MCT/DCT
‘ ‘ ' DRAM ’ ' I DRAM 4 HyperTransport™3 Technology Ports
Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 17

onsdag den 2 maj 2012

CACHES ARE IMPORTANT IN SO MANY
WAYS...

»Sharing a cache line between cores lead to cache “ping-
pong”

—Try not to access shared memory frequently

»Having a large active working-set in one processor can give
cache misses in another
—Opteron not the only such architecture

» A constant tradeoff

—Keep a schedulers memory separate

—Keep the memory consumption at a minimum (often functional
programs weak spot)

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 18

onsdag den 2 maj 2012

TO SCAL

OVER MORE AND MORE

CORES..

»You should not have algorithms where the waste part
increases with each new core

—A well thought through strategy for each shared concept
—Be aware of the whole system

»You should have algorithms that allow cores to be added
—Algorithms divided into to big tasks can not utilise any number of cores

CPU power 4

Useful

Waste

Number of cores

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 19

onsdag den 2 maj 2012

MOVING BACK TO ERLANG...

» A shared resource is i.e. an ETS table or a central server
—Don’t have central resources
—If a central ETS table is needed, use read _concurrency and batch writes if possible
—If a shared server is used, make sure it works as asynchronous as possible
Always answer a client at the earliest possible point
Carefully utilize asynchronous message passing
—Build hierarchies of processes if possible
Workers to offload the server
Interface processes/caches

i Move
ParaIUlsm in Erlang | Public | ricsson AB 2012 | 2012-05-02 | Page ‘

onsdag den 2 maj 2012

THINK ABOUT THe CACHE AND
MEMORY - eEVEN IN ERLANG

»Don’t fall into the “multiplying memory consumption trap”

—Divide the active working set when parallelizing

—A common way to parallelize is to do already independent tasks in
parallel instead of sequentially:

— Time
Active working Active working Active working Active working
set: 256 MB set: 256 MB set: 256 MB set: 256 MB

b

Four cores

Active working set: 1 GB

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 21

onsdag den 2 maj 2012

PARALLELIZING IN ERLANG...

» Often you don’t need to (it's implicitly done)

»When you need to explicitly parallelize:

—Algorithm decomposition into tasks is done in the same way as in any
language

—The functional language gives you power to implement complex

algorithms

—The actor model gives a lot of help when parallelizing the complex
algorithm

—The implementation of the VM helps you utilize the resources of the
machine

—...but a bad decomposition of a problem is bad in any language

» There is still a computer down there you will have to relate
to
—It just behaves more friendly when you write in Erlang...

Parallelism in Erlang | Public | © Ericsson AB 2012 | 2012-05-02 | Page 22

onsdag den 2 maj 2012

ERICSSON

